The p version of mixed finite element methods for parabolic problems

نویسندگان

  • SONIA M. F. GARCIA
  • SØREN JENSEN
  • Sonia M F. GARCIA
  • Sonia M F GARCIA
  • S JENSEN
چکیده

We investigate a parabolic problem from the point of view of stability and approximation properties of increasmg order mixed (in space) finite element methods Previous estimâtes for the Raviart Thomas projection are proven to be sharp We analyze the effects of mixedfinite element discretizatwn in space to present transient error estimâtes (for semidiscrete mixedfimte element methods) The results in this paper (submitted in Oct 1993) complement the results already published in [6 8] Résumé — Un problème parabolique a été étudié d'un point de vue stabilité, ainsi que des propriétés d'approximation des méthodes des éléments finis mixtes (en espace) d'ordre croissant II est montré que des estimations précédentes faites sur la projection Raviart-Thomas sont précises Nous avons pu analyser les effets de la discretizatwn du méthode des éléments finis, en espace, afin de présenter des estimations d'erreurs transitoires (pour des méthodes des éléments finis mixtes semidiscrets) Les résultats de cet article (soumis en Oct 1993) complètent les résultats déjà publiés dans les références [6 8]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A new positive definite semi-discrete mixed finite element solution for parabolic equations

In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations.  Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...

متن کامل

Hp -version Discontinuous Galerkin Finite Element Methods for Semilinear Parabolic Problems

We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...

متن کامل

The p Version of Mixed Finite Element Methods for ParabolicProblems 1

We investigate a parabolic problem from the point of view of stability and approximation properties of increasing order mixed (in space) nite element methods. Previous estimates for the Raviart-Thomas projection are proven to be sharp. We analyze the eeects of mixed nite element discretization in space to present transient error estimates (for semidiscrete mixed nite element methods).

متن کامل

On the natural stabilization of convection diffusion problems using LPIM meshless method

By using the finite element $p$-Version in convection-diffusion problems, we can attain to a stabilized and accurate results. Furthermore, the fundamental of the finite element $p$-Version is augmentation degrees of freedom. Based on the fact that the finite element and the meshless methods have similar concept, it is obvious that many ideas in the finite element can be easily used in the meshl...

متن کامل

Adaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems

We will investigate the adaptive mixed finite element methods for parabolic optimal control problems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed finite element spaces, and the control is approximated by piecewise constant elements. We derive a posteriori error estimates of themixed finite element solutions for optimal control problems. Such a posteriori ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017